Original Research - Special Collection: Changing Global Context
Algae colonisation of brick pavement at the University of Venda: A potential slippery hazard
Submitted: 13 June 2018 | Published: 04 July 2019
About the author(s)
Thabelo R. Munyai, Department of Ecology and Resource Management, University of Venda, Thohoyandou, South AfricaThantaswa Sonqishe, Department of Ecology and Resource Management, University of Venda, Thohoyandou, South Africa
Jabulani R. Gumbo, Department of Hydrology and Water Resource Management, University of Venda, Thohoyandou, South Africa
Abstract
A brick pavement, tramped by humans, is exposed to atmospheric elements, thus allowing cyanobacteria and algae to colonise. In this article, we report on the factors that contribute to the slipperiness of a brick pavement at the University of Venda in the Limpopo province of the South Africa. Samples were collected from brick surfaces either colonised by green algae (treated) or not (control). The samples were acid-digested and analysed for metals by Inductively Coupled Plasma Mass Spectrometry (ICP MS) in parts per billion (ppb). The treated bricks, with green algae, had average high metal contents (ppb): Al 9456.02, Ti 731.23, V 46.44, Cr 78.85, Mn 862.93, Fe 16295.18, Co 23.57, Ni 59.36, Cu 66.31, Zn 160.57, As 7.92, Se 10.45, Mo 6.74, Cd 5.19, Sn 4.65, Sb 2.31 and Pb 19.51. In contrast, control bricks had a low average of metal content (ppb) as follows: Al 2.99, Ti 0.28, V 4.04, Cr 1.42, Mn 4.29, Fe 20.89, Co 0.36, Ni 2.74, Cu 5.64, Zn 4.21, As 0.56, Se <3.00, Mo 0.88, Cd 0.01, Sn 1.05, Sb 0.04 and Pb 0.04. Other factors that promote algae colonisation include high solar radiation, neutral pH, nutrients, low electrical conductivity and total dissolved solids. The algae colonisation of brick pavement results in an unaesthetic sighting and a slippery surface that is hazardous to humans.
Keywords
Metrics
Total abstract views: 2457Total article views: 3903
Crossref Citations
1. Iningainema tapete sp. nov. (Scytonemataceae, Cyanobacteria) from greenhouses in central Florida (USA) produces two types of nodularin with biosynthetic potential for microcystin-LR and anabaenopeptin production
David E. Berthold, Forrest W. Lefler, I-Shuo Huang, Hussain Abdulla, Paul V. Zimba, H. Dail Laughinghouse
Harmful Algae vol: 101 first page: 101969 year: 2021
doi: 10.1016/j.hal.2020.101969