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Introduction
Hazards are usually present across any landscape. However, when adequate and appropriate 
actions are not taken, such hazards can result in disaster. Therefore, it is apparent that hazards are 
inevitable; it is the human response and impacts that often dictate whether such hazards become 
disasters. Oil spills across any environment are very hazardous in relation to their social, 
environmental and economic impacts. It is with this understanding that oil spill contingency 
planning is very important in the marine, estuarine, lacustrine and riverine areas of the country. 
This is especially of significance for those areas where oil exploration and exploitation activities 
are taking place – the vulnerable regions. After any spill, the situation can quickly deteriorate with 
huge levels of impact when appropriate and prompt actions are not taken. However, in order to 
define priorities, initiate actions and deploy resources for oil spill response, there is a clear and 
definite need for locations of sensitive habitats to be known.

The Exxon Valdez shipwreck 1989 (Alaska) was a wake-up call, which led to the development of 
the International Convention on Oil Pollution Preparedness, Response and Cooperation in 1990 
(OPRC 90) by the International Marine Organization (IMO). The convention came into force in 
May 1995 and Nigeria is a signatory to the convention. This is aimed at fostering cooperation 
among countries towards international efforts in emergency preparedness in response to accidents 
with oil spills. It also stipulated that all ships and offshore facilities in the sector must have 
emergency plans or similar arrangements coordinated with national systems for response and 
effective management of oil pollution incidents.

Environmental Sensitivity Index (ESI) mapping is an important tool in oil spill planning. It 
provides a support for the development of response strategies for oil spills, identification of 
elements at risk and helping to define and prioritise areas for protection and remediation. ESI has 
three components: shoreline sensitivity ranking, biological and human resources distribution. 
Shoreline sensitivity is very important in defining ease of clean-up as well as potential for natural 
clean-up. With the importance of this tool, it is therefore pertinent that methods and techniques 
are developed to take into cognisance the challenges of data collection in the middle- and low-
income countries. A significant data gap exists across many of these countries in the aspect of 
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environmental monitoring (Gutierrez 2010) and when these 
data sets are available they are often sparse. It is to this end 
that this study seeks to develop an expert system (ES) to rank 
the sensitivity of the shoreline of Rivers State (a major oil 
producing state in Nigeria) to oil spill using remote sensing 
and geographic information systems (GIS). This is intended 
to provide a rapid assessment framework which could lead 
to the development of ESI and allow for the updating and 
improvement of oil spill contingency planning in the region 
and the country, while also supporting effective disaster risk 
management across vulnerable regions of the country.

Oil spill could be as a result of an accidental release of oil 
from platforms, tankers, wells, rigs, and so forth into either 
the marine or terrestrial environments. Over the years there 
have  been numerous examples of significant oil spill in 
Nigeria; the work of Nwilo and Badejo (2006) and a look at 
the Oil Spill Monitor (https://oilspillmonitor.ng/) give a 
clear indication that the occurrence of such disasters is still 
prominent across the oil producing regions of the country. 
It  is very clear that even with the best laid plans, the 
management of disasters requires an iterative and continuous 
evolution of techniques, actions and measures. It is a clear 
understanding that the impacts of oil spills are often worse 
because of the lack of adequate data and information to guide 
actions and deployment of resources for preparedness and 
response.

Oil spill contingency planning and response are ultimately 
aimed at protecting human life, reducing environmental 
impact of the spill and supporting remediation actions 
(Jensen, Halls & Michel 1998). These goals cannot be 
effectively achieved if the position of sensitive environments 
and elements at risk are unknown, not collated and 
improperly documented. The development of such planning 
culminates into the production of an ESI map. This map, 
while supporting the oil spill contingency planning, is also 
relevant prior to spills in the identification of vulnerable 
locations, deployment and establishment of protection 
priorities as well as identification of clean-up strategies 
(National Oceanic and Atmospheric Administration [NOAA] 
2016). ESI mapping has been carried out across many regions 
of the world in an  effort to produce an evidence-based 
response system for  oil spill risk management, especially 
across many high income oil producing countries. In the 
United States, the NOAA is responsible for mapping the 
coastal regions (as well as rivers, lakes and estuaries) of the 
country. ESI maps are increasingly being developed across 
many countries and their use is becoming very important in 
many oil producing countries (Pincinato, Riedel & Milanelli 
2009). The NOAA guideline provides a very clear framework 
for ESI mapping based on physical, biological and human 
resources present in the environment of interest. According 
to Pincinato et al. (2009), the NOAA framework formed the 
backbone of the development of the manual by the Regional 
Association of  Oil, Gas and Biofuels Sector Companies in 
Latin America and the Caribbean (ARPEL) and International 
Petroleum Industry Environmental Conservation Association 
(IPIECA) for ESI mapping. The importance of this tool cannot 

be overemphasised in the management of oil spills (human-
induced hazards).

Even though there are established frameworks for mapping 
environmental sensitivity to oil spills, data and the condition 
of the environment often affect how this tool is developed 
and utilised. The development in the area of GIS and remote 
sensing technologies as well as increasing access to medium 
resolution data at global level offers a good opportunity in 
many parts of the world where data are a major challenge. 
GIS has unique advantages over the conventional paper-
based ESI maps. It allows for reduced production cost 
because it can be deployed electronically, ensure easy 
distribution as well as support the ease of updating the 
map when new information becomes available. Furthermore, 
using GIS in the development of ESI allows for building of 
databases which can be queried and provides a framework 
for extensive spatial analysis.

In recent times, various studies have adopted different 
methods in the development of ESI map. For example, 
working on the Mediterranean coast of Israel, Adler and 
Inbar (2007) used GIS for the development of sensitivity 
mapping, the relative sensitivity of shoreline types and 
prioritisation scheme for the shoreline types and coastal 
resources. Pincinato et al. (2009) implemented the standards 
set by the Brazilian Federal Environment Organ for the 
littoral regions of Brazil where oil transportation is intense. 
The study systematically ranked the littoral regions based on 
winter and summer condition of the habitat, using a 
knowledge-based ES. Wieczorek, Dias-Brito and Milanelli 
(2007) in their study developed a littoral sensitivity index for 
the Cardoso Island State Park (Sao Paulo State, Brazil). They 
identified differences in seasonal sensitivities and concluded 
that estuarine mangroves were the most sensitive of the 
coastal habitats in the study area. Using a multi-criteria 
evaluation, Vafai, Hadipour and Hadipour (2013) combined 
fuzzy set theory, hierarchical structure analysis and the 
analytical hierarchy process (AHP) within GIS in the 
development of environmental sensitivity of the coastal area 
of Mazandaran Province (Northern Iran). The comparison of 
their results with the actual shoreline indicated that the 
method adopted (Fuzzy AHP) predicted sensitivity optimally. 
They attributed this to the combination of fuzzy set theory 
and the AHP.

In the case of Nigeria, the work of Adeofun and Oyedepo 
(2011) examined the sensitivity of Atlas Cove in Lagos. The 
work identified nine classes of sensitivity along the study 
area based on the NOAA and the Nigerian Oil Producing 
Trade Section standard. Gundlach, Hayes and Getter (1981) 
also produced a sensitivity map for oil spills along the 
Nigeria Coast. Furthermore, the National Oil Detection 
and  Response Agency (NOSDRA) was reported in 2010 to 
have begun the development of ESI for management of oil 
spills along the Nigerian Coastline (Mohammed 2010). Fabiyi 
(2002) also proposed and presented a method of ESI mapping 
in a selected area of Rivers State; however, this method only 
considered soil and land use data, excluding other relevant 
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data on shoreline types, biological resources and human 
resources. From the foregoing, it is quite clear that there is 
limited work on ESI across the Nigeria marine, estuarine, 
lacustrine and riverine environments. This could be attributed 
to data access and availability as well as the enormity of the 
resources required to complete such tasks. However, there is 
a need for such information to be developed and accessible to 
communities and other stakeholders to support awareness 
and advocacy in the area of environmental justice. To this 
end, this study presented an approach which could leverage 
available information and models in identifying the shoreline 
sensitivity aspect of the ESI mapping exercise.

By simulating the response decision of an expert for a given 
situation at a given location, a computer program can be 
developed based on previous knowledge collected in the 
field or from standard documents (manuals, guideline, etc.). 
Such understanding or expert knowledge can be provided to 
the computer system to develop rankings, which can be used 
to designate the sensitivity index for the different segments 
of the shoreline. ES represents a branch of applied artificial 
intelligence whereby the vast body of knowledge for a 

specific task is transferred from humans to the computer 
(Liao 2005). ES deployed with the aid of geographic databases 
has witnessed widespread applications across different areas 
of research, including mapping of forest soils (Skidmore et al. 
1996), predicting Matsutake mushroom habitat in Yunnan, 
South west China (Yang et al. 2006) and monitoring of salinity 
(Giordano & Liersch 2012; Metternicht 2001). Furthermore, 
Lukasheh, Droste and Warith (2001) presented a review 
of  the application of these systems in landfill design 
and  management, showcasing extensive examples. Other 
examples include mapping of invasive species in Zimbabwe 
(Masocha & Skidmore 2011), disaster assessment (Kou, 
Ergu & Shi 2014), siting of retail stores (Sadler 2016), landslide 
susceptibility (Bui et al. 2012), mineral exploration – potential 
modelling (Porwal & Carranza 2015), et cetera.

Materials and methods
Study area
Rivers State (Figure 1) is located within the Niger Delta 
region of Nigeria with three distinct ecological zones – 
mangrove forest and coastal vegetation, fresh water 
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FIGURE 1: Rivers State topography and drainage networks.
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swamps and lowland rainforest (Niger Delta Development 
Commission 2006). The State is intersected by a network of 
rivers, streams and creeks, with its coastline forming part of 
the West African Coastline.

Geologically, it is situated within the coastal plain belonging 
to the Niger Delta sedimentary formation (Short & Stauble 
1967). Essentially, the area is on an extensive fluvial alluvium. 
Slope of the study area ranges between an average of 3 and 
5 degrees in an NW-SE direction. Its poor drainage could be 
attributed to the low relief and gentle slopes found across the 
entire study area. Details of the region’s land and its people 
are extensively addressed by the Niger Delta Development 
Commission (2006). The pattern of settlement across the 
region is a result of dry land availability; therefore, large 
cities such as Port Harcourt are usually found on the dry 
islands in the mangrove swamp in the hinterland of the 
Delta. Agriculture and industries as well as fishing and 
subsistence farming are the main source of livelihood. 
Industries such as food manufacturing, oil servicing, oil and 
gas, construction and marine industries are also prominent.

The coastline is dominated by the littoral rainforest 
interspersed by evergreen rainforest, while a small section 
is covered by swamp forest; however, as one moves inland 
the landscape is dominated by swamp forest interspersed 
by mangrove forest (Sayre et al. 2013) and it is dominated by 
the species Rhizophora racemosa (Nwilo & Badejo 2006).

The climate of the study area is Tropical Monsoonal (Rubel & 
Kottek 2010), which is characterised by a short dry season 
and a pronounced wet season, which starts around March 
and lasts till October with a break around August. The 
temperature remains relatively constant throughout the 
year and ranges between a maximum of 28 °C and 33 °C to a 
minimum of 21 °C and 23 °C. The coastline experiences an 
average wind velocity ranging between 2 m/s and 5 m/s and 
this speed can increase to about 10 m/s during heavy rainfall 
and thunderstorms (Nwilo & Badejo 2006).

The State is a major oil producing region of the Niger Delta, 
boasting extensive reserves of crude oil and natural gas. It is 
currently the second largest producer after Akwa Ibom 
State (Oil Revenue Tracking Initiative 2013) and it currently 
hosts two oil refining facilities, the liquefied natural gas 
project (Bonny) and a host of other petrochemical related 
industries.

Data
Data sets relevant for the categorisation of the shoreline 
across the study area were collated, and such data leveraged 
the advances in remote sensing. In order to categorise the 
shoreline, data on shore types, slope, wave exposure and 
sediment types were collated. The elevation data were 
extracted from the Shuttle Radar Topographic Mission 
(SRTM) 1 Arc second resolution data set from the U.S. 
Geological Survey. These were used to compute the slope of 
the region. The data were extracted in the Georeferenced 

Tagged Image File Format (GeoTIFF), the horizontal datum 
is  the World Geodetic System 1984 (WGS84 – Geographic) 
while the vertical datum is the Earth Gravitational Model 
1996 (EGM 96) ellipsoid and the vertical unit is meters 
(USGS 2016).

Shore types were manually digitised and identified from 
a mosaic of recent Google Earth imageries (especially that of 
02 November 2016). Visually identifiable segments of  the 
shoreline up to 40 km inland were classified based on visually 
identifiable features of the shoreline. The work of Oyegun 
(1993) was also examined to serve as a baseline for comparison 
of shoreline characteristics along the coastline.

Dominant sediment types were derived from the soil data. 
The Harmonised Africa Soil Map (Dewitte et al. 2013) was 
used to derive the dominant sediment types. Properties of 
the representative soils along the segment of the shorelines 
were collated and particle size fraction data were examined 
to derive the most dominant particle size.

Wave exposure was computed using the Wave fetch model 
(Burrows, Harvey & Robb 2008). This is a first-order estimate 
of wave exposure. The model is based on the understanding 
that the larger the fetch area for each shore unit the greater 
the wave exposure. The model requires identification and 
classification of the shoreline, water and land areas, from 
which fetch values for each of the 16 angular sectors were 
calculated. The sum of the fetch values for each of the 
shoreline grid cells was used to represent the wave exposure.

Method
The study used a combination of NOAA guidelines (NOAA 
2016) and the standard set by Oil Producing Trade Section as 
cited in Adeofun and Oyedepo (2011) for the shoreline. In 
order to construct the GIS-based ES, three stages of operation 
were followed: identification and collation of required data 
for classification, definition of the knowledge-based rules 
and GIS-based modelling of the rules.

Using clearly identifiable characteristics of units along 
the  shoreline, shore types were identified and partitioned 
(Figure 2). Prior to the computation of the slope, sinks and 
holes within the Digital Elevation Model (DEM) were filled 
within ArcGIS (ESRI 2015). The slope was computed in 
degrees within the ArcGIS and classified into four different 
classes – low slope (< 5), moderate slope (5–8), steep slope 
(8–15) and very steep slope (> 15).

The soil particle fraction with the highest proportion was 
extracted to represent the dominant sediment types for the 
soil types found along the shoreline. From this, sediment 
types could be defined as sand, silt or clay. In addition, areas 
with man-made structures along the shoreline were classified 
as having solid aggregate sediment type.

Wave Exposure as represented by the sum of fetch length 
was  grouped into three classes (Table 1): low, moderate 
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and high, based on the natural breaks classification of Jenks 
(1967). With this, the three wave exposure classes are low 
(2.00 ≥ x ≤ 124.01), moderate (240.65 ≤ x > 124.10) and high 
(>  240.65). Slope, exposure and dominant sediment types 
were all initially in raster format while the shoreline types 
were stored in vector format. The shoreline type was 
converted to point data whereby each segment is subdivided 
at 1 m intervals. The point data file was subsequently used 
to  extract values from the raster-based data sets (Slope, 
Exposure and Dominant Sediment types).

The second stage of the operation involved the definition 
of  the knowledge-based rules. The rules were adapted 
and  modified based on the Oil Producers Trade Section 
(OPTS) classification and the NOAA guidelines. The 
shoreline sensitivity index (SSI) is organised into 10 
classes, with the highest values indicating the highest 
sensitivity to oil spill. Based on this, each shoreline unit 
was assigned SSI based on the sensitivity index with the 
closest match to the guidelines (OPTS and NOAA). A 
decision tree was used to define guiding rules for assigning 
SSI values, based on the combination of the attributes 
collated. The decision tree is represented in Figure 3 and 
the rule definition started from shore types and ended 
with the wave exposure.

Computed fetch data were used in the confirmation of the 
wave exposure of the shoreline; thus, shoreline segments 
with low relative wave exposure were considered as sheltered 
and all others were considered as exposed (i.e. medium to 
high wave exposure).

The data sets were stored and manipulated within ArcGIS, 
and the ranking illustrated in the query language using 
logical operators. Each segment (rule) of the decision tree 
was programmed to ascertain the conditions required for 
a  positive identification and subsequent assignment of 
SSI  value. Essentially, the knowledge-based rules were 
implemented by an ES using a conditional algorithm in 
association with GIS-stored spatial data. The ES was modelled 
within SPSS (IBM Corp. 2015).
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TABLE 1: Distribution and length of wave exposure classes along the shoreline.
Wave exposure class Length (km)

Low 11.30
Moderate 40.70
High 48.00
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Results and discussion
The collated data set and the subsequent processing result in a 
728 km shoreline of the study area. The distribution of the 
shoreline types gave a clear indication that 70% of the entire 
shoreline can be classified as having swamp forest/
mangroves/nympa palm, which represents a total of 509 km 
(Table 2). Furthermore, a total of 129 km and 70 km were 
identified as fine grained sandy beach and tidal flats, 
respectively, while shore lined with man-made structures was 
found on around 3% of the total shoreline length. Recovery 
time is greatly impacted by the type of shoreline (ITOPF n.d.). 
Mangroves have an indicative recovery period  of over 10 
years, and sand beaches have a recovery period of between 1 
and 2 years after oiling. About 70% of the shoreline examined 
was classified as swamp forest/mangroves/nympa palm. 
With this, there is a need for considerable effort and attention 
to forestall oil spills as well as initiation of prompt action in the 
case of oil spill disaster across the region.

Dominant sediment types were found to be mainly silt and 
clay (Table 3), while a small proportion (3.3%) of the shoreline 
having sediment types broadly classified as solid aggregates 
(wood, concrete, sand bags, sheet pile, boulders, cobbles – 
essentially made up of large aggregate materials).

Surface particle sediments serve as potential areas of 
adsorption by different cations and anions. Therefore, the 
more the surfaces available for these to adhere to, the higher 
the chances that there would be more of these in the 
sediments. Sediments are ultimately sinks of metals and 
particulate matter that are present in the aqueous phase. Fine 
particle sediments, especially clay and silt, are generally rich 
in organic content and often have higher cation exchange 
capacities and are able to trap metal ion, while sandy type 
sediments, being organically poor, have little ability to retain 
metal ions (Liao, Selim & Delaune 2009). The larger surface 
area of silt and clay makes them more chemically active than 
sand. Clay dominated sediments will ultimately have lower 
permeability which could reduce oil penetration. 
Furthermore, the depth of penetration is lower for silt and 
clay sediment because of the size of the particle, while the 
depth of penetration is high for sandy sediments. In essence, 
coarse sediments are likely to allow greater penetration than 
finer materials. Finer materials could also limit the effects of 
wind and wave action in carrying out natural clean-up as the 

materials are tightly packed compared with coarse materials. 
With most of the shoreline having silt and clay sediments, 
this portends serious consequences for long-term retention of 
materials from oiling condition, thereby making the clean-up 
much more difficult.

Inclination of the shoreline shows that about 476 km of the 
shoreline belongs to the low slope class, while about 135 km, 
100 km and 17 km belong to the moderate, steep and very 
steep slope classes, respectively (Table 4). Inclination of 
the  shoreline influences reflection and breaking of waves, 
consequently affecting the width of the intertidal streak. In 
essence, steep areas of the shoreline have enhanced natural 
clean-up potential compared to areas with lower inclination 
which often allows oil to stand for a long time (as the wave 
energy is often dissipated further, very little reaches the 
shoreline). From the result, it is evident that most segments of 
the shoreline have very little natural clean-up potential in 
relation to the slope, as 65% of the shoreline segments have 
low slope. Thus, there is a tendency for oil to stand for a long 
period because of very low natural clean-up by wave action 
as predicated by the slope.

In the case of wave exposure, the majority of the shoreline 
digitised falls within the moderate and high wave exposure 
classes – 40.7% and 48%, respectively. Exposure is important 
to harness the natural ability of waves to carry out natural 
clean-up as well as habitat establishment and development 
(high wave exposure influences population and types of 
organisms found in such regions). The approach adopted in 
this study considered all the types of environment (Marine, 
Estuarine, Lacustrine and Riverine) based on the sum of 
fetch length. This provides a uniform classification frame for 
comparison of exposure across the shoreline. From the result, 
about 89% of the shoreline is exposed, with the indication 
that in the case of oil spills natural wave action could aid the 
clean-up process. However, the inclination, sediment and 
shoreline types would significantly impede such action. 
Essentially, the high wave exposure also has an implication 
for the spread of the oil spilled, subject to the viscosity of the 
oil, wind speed, water temperature, current as well as tidal 
stream (UNEP 2016).

The distribution of the SSI based on the decision tree 
(Figure 2) shows that about 61% of the entire length of the 
shoreline in the study area have a sensitivity rank of 9 
(Figure  4), which amounts to about 446 km of very high 
sensitivity shoreline (Table 5). The number of segments 
across this dominant rank is also high compared with other 
ranks. However, Rank 10 was found across just about 66 km 
of the entire shoreline, and it is very fragmented having 
652 segments over this length. These segments represent the 

TABLE 2: Distribution and length of shoreline types across study area.
Shore types Length (km)

Fine grained sandy beach 128.83
Man-made structures 22.97
Swamp forest/mangroves/Nympa Palm 509.12
Tidal flats 66.93

TABLE 3: Distribution and length of sediment types across the shoreline.
Sediment types Length (km)

Clay 168.86
Silt 534.97
Solid aggregates 24.02

TABLE 4: Distribution and length of different slope classes across the shoreline.
Slope class Length (km)

Low 476.01
Moderate 134.65
Steep 99.71
Very steep 17.47
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extremely sensitive units within the area. The high level of 
fragmentation for this rank is directly related to the 
interspersion of many man-made structures across the 
shoreline in this region. These structures include oil and gas 
infrastructure, settlements, et cetera.

Rank 1 accounts for just over 2% of the entire length of the 
shoreline, whereas Rank 3 was found across 19% of the entire 
shoreline. Rank 8 has the smallest coverage with just over 
4 km of the shoreline having characteristics fitting this rank.

The sensitivity ranking gave an indication that a significant 
proportion (78%) of the shoreline studied is highly sensitive 
to oiling (Ranks 7, 8, 9 and 10); thus, this makes it very 
important that vigilance and adequate monitoring should be 
taken seriously. This also raised serious concern about the 
resources required in case of oiling across these segments 
of  the shoreline. A spatial query of the Oil Spill Monitor 
Database could reveal the number of incidences across these 
highly sensitive shorelines. This could essentially offer a clue 
to where highly vulnerable segments are located, as well as 
offer an insight into why it happens in these places and the 
potential solutions to limiting the number of incidences.

Conclusion
The results gave a clear indication that the alluvial plains of 
Rivers State have a complex mixture of sensitive environments 
to oil spill. The GIS-based ES with classification rules for 
shoreline sensitivity provided a rapid and flexible framework 
for automatic ranking of shoreline sensitivity to oiling based 
on known standards. This SSI, when incorporated with data 
on biological and human resources, would provide a 
complete picture of the environmental sensitivity to oil spills 
across different environments in this vulnerable region.

As the data set is stored within a GIS environment, there is 
a clear opportunity to update the GIS database, thus making 
it possible to access up-to-date information relevant for 
emergency operation and response. With the ES in place, new 
data obtained from remote sensing and fieldworks can be 
quickly added to the database, thereby allowing for rapid 
assessment of ongoing emergency situations as well as 
allowing for taking proactive measures to forestall potential 
hazardous events.

The GIS-based ES for shoreline sensitivity presents an 
opportunity for prioritisation of clean-up operations, 
intervention measures, planning as well as supporting 
evidence-based decisions on clean-up and containment 
procedures applicable for affected environments. The study 
adapted the combination of the Nigerian and the NOAA 
standards for the ranking of shoreline sensitivity. It is 
expected that the application of this approach within a spatial 
database supported by an ES would be extended to cover all 
of the oil producing regions of the country.

Source: Esri, HERE, DeLorme, Intermap, increment P
Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase,
IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI,
Esri China (Hong Kong), swisstopo, MapmyIndia, ©
OpenStreetMap contributors, and the GIS User
Community 
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FIGURE 4: Shoreline Sensitivity index to oil spill for the study area.

TABLE 5: Proportion of shoreline sensitivity of ranking in the study area.
Rank Length (km) Number of segments

1 18.92 50
3 141.20 18
7 51.68 76
8 4.37 48
9 446.17 765
10 65.51 652
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Results from this study gave an indication of the potential of 
the approach in supporting response teams and regulatory 
agencies. Essentially, this is an endeavour of supporting 
decision-making for clean-up activities, damage evaluation 
as well as supporting environmental advocacy in the oil 
producing region.
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