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Introduction
Naturally, wildfires have existed all over the Earth’s land surface before humans started 
influencing them. Fires are essential for clearing plant debris and enabling the regeneration of 
specific plant species (Fidelis 2020). Additionally, fires affect plants by promoting resprouting, 
germination and flowering after they occur (Midgley & Bond 2013). Fires impact ecosystems 
globally, regardless of their ignition source – natural or human induced. Moreover, fires pose 
significant threats to human lives, health and livelihoods (Edwards et al. 2020). For instance, one 
fire event in South Africa’s Garden Route region caused the deaths of seven people, resulted in 
approximately USD 105 million in property damages and burned down more than 5000 ha of 
forest (Kraaij et al. 2018; Forsyth et al. 2018; Frost et al. 2018). According to NASA (2023), the 
Northern Hemisphere experienced an increased frequency of fires and a prolonged fire season in 
2023 with large fires occurring in Canada, Greece, Hawaii and the Canary Islands. It is argued 
that warmer temperatures from climate change are mostly responsible for the unusual fire season 
(NASA 2023). However, conditions favouring the spread of fires are dynamic and multifaceted. 
Grasping the behaviour, spread and occurrence of fire is a complex endeavour. In fact, it has been 
argued that ‘a case can be made for fire being, next to life processes, the most complex of 
phenomena to understand’ (Rein 2013:16). The occurrence of fires is dependent on flammable 
materials, sources of ignition and the climate (Holsinger, Parks & Miller 2016). Nevertheless, it is 
important to look past simplifications and generalisations of fire occurrences and to focus on the 
specific characteristics and drivers of fires to truly understand the patterns of these events over 
large temporal and spatial scales. This can be crucial to informing disaster risk planning and fire 
management plans, strategies and policies. Studying fires requires knowledge of fire regimes; 
however, there is no consensus on what characterises a fire regime. In this review article, the 
defining characteristics and drivers of fire regimes are explored and a new framework to 
understand fire regimes from a (bio)geographical perspective is proposed.

Fire regime drivers and characteristics 
Definitions of fire regimes vary widely with many authors finding it challenging to capture its 
essence. One prominent definition states that a fire regime is ‘… a structured description of the 
role of fire in ecosystems, mostly involving the parameterization of fire occurrence in a defined 
space–time window’ (Krebs et al. 2010:61). Oddi (2018:1) defines fire regimes as ‘the spatial 
and temporal pattern of fires and their effects in a given area and over a given time period’. 
Park and Allaby (2017) further expanded on this idea, suggesting that a fire regime can be 
understood as:

[T]he role that fire plays in an ecosystem, which depends on the frequency and scale of fires, and may 
include proposals for the controlled use of fire in a given area. (n.p.)

Fire regimes are often considered to be either driven by climate, fuel load or human activities. 
A significant proportion of fires across various ecosystems occur via large fire events. Recently, 
suggestions have been made that fires are becoming more severe and frequent as a consequence 
of current climate change. Although there are many factors influencing fire events, scientists 
have not found a suitable framework that can provide for understanding fires at the macroscale 
level. This review article proposes a new conceptual framework to better understand fire 
regimes. The proposed framework relies on a biogeographical perspective of fire regimes that 
include characteristics that have been underestimated in previous frameworks and to mitigate 
time as well as spatial scale issues at the macrolevel.
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Table 1 presents the numerous characteristics that different 
authors have incorporated in their efforts to define the term 
‘fire regime’. The majority of the authors specifically refer to 
frequency, seasonality, extent, intensity and type in their 
definitions. Additional characteristics include severity, burnt 
area, biomass, impacts and prescribed burning. Interestingly, 
ignition and fire weather are not prominently features in the 
definitions of the term. Davies (2013) contends that defining 
‘fire regimes’ is a challenging and intricate task and points 
out that one must recognise that the components of fire 
regimes will vary in importance across different spatial and 
temporal scales, as well as among the biotic and abiotic 
elements of ecosystems. 

The spatial distribution of fires is influenced by the interaction 
between climate-limited and fuel-limited fire landscapes, 
occasionally known as the aridity and productivity gradient 
(Prichard, Stevens-Rumann & Hessburg 2017). Climate-
limited areas, which are highly productive in terms of 
vegetation and receive large quantities of rain – such as 
tropical rainforests – tend to have fewer fires. Conversely, 
arid regions like deserts, with minimal rainfall and low 
vegetation productivity, provide limited fuel for fires 
(Prichard et al. 2017). The influence of climate in fire regimes 
is a contentious issue, with some researchers arguing that the 
properties and amounts of biomass and human activities 
play a more prominent role in fire occurrences than climate 
(Archibald et al. 2018, Kraaij et al. 2018). Human activities 
affecting fire regimes mainly involve fire management 
practices and land use and land cover change (LULCC). 
Although it is essential to consider the biophysical variables 
of fire regimes, the influence of human actions has become 
increasingly apparent. Furthermore, Scheller et al. (2019) 
emphasise that contemporary fire regimes are predominantly 
shaped by human activities. Actions such as arson, 

deforestation, habitat fragmentation, introduction of invasive 
alien species, warfare, erection of artificial barriers, fuel 
treatments and patch burning can significantly modify fire 
regimes (Bowman et al. 2011). Since the 20th century, fire-
suppression policies implemented by humans have led to the 
accumulation of fuel, thereby altering fire seasons (Batista 
et al. 2018; Holsinger et al. 2016).

New framework
Numerous efforts have been made to generalise or simplify 
the factors that influence fires across different spatial and 
temporal scales. The literature is abundant with ‘fire triangle’ 
models developed by Moritz et al. (2005). While these 
attempts all start off with three requirements for a small fire 
to exist – oxygen, heat and fuel – they fail in the ‘succession’ 
of the requirements on a larger scale. For example, arguing 
that ignition only becomes important at ‘wildfire scale’ 
(Gomes, Miranda & Bustamante 2018) or ‘fire regime scale’ 
(Moritz et al. 2005) is odd as a source of ignition is required 
for microscale fires too. As the impact of humans on 
vegetation, climate and fire ignitions became more 
recognised, Bowman et al. (2011) introduced an evolved 
version of the fire triangle. This framework provides a more 
dynamic perspective on fire occurrences over time, 
incorporating elements such as climate change, agriculture, 
fire suppression and the domestication of plants, animals 
and fire. However, this representation entirely omits the role 
of topography. Archibald et al. (2008) developed a model to 
illustrate the factors leading to fire events in the southern 
African savannas. The unusual groupings of variables, 
particularly weather-related ones, presents challenges. For 
instance, wind speed affects not only fire intensity but also 
fire spread, and size and topography can influence wind 
speed and direction. Additionally, topography can influence 
wind speed and direction too. Recently Kelly et al. (2023) 

TABLE 1: Characteristics of fire regimes.
Author Frequency Seasonality Extent or 

size
Intensity Type Severity Burnt area Biomass Impacts Prescribed 

burning
Ignition Fire 

weather

Argañaraz et al.  (2015)

Bedia et al. (2015)

Braun de Torrez (2018)

Chergui et al. (2018)

Davies (2013)

De Groot et al. (2013)

Dye et al. (2020)

Foster et al. (2020)

Keeley & Syphard (2016)

Krebs et al. (2010)

Liu and Wemberly (2016)

Meigs et al. (2018)

Oddi (2018)

Park and Allaby (2017)

Pausas and Keeley (2014)

Scheller et al. (2019)

Whitman et al. (2015)
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proposed a framework to understand fire regimes in general 
and in terms of the human impact thereof. Their basic model 
does not mention the hydrosphere at all and seem to indicate 
that fire regimes were virtually non-existent before human 
interference started during the Anthropocene. The 
hydrosphere’s role in fire regimes is often undervalued as 
water bodies not only serve as natural firebreaks but also as 
sources of soil moisture (Doerr & Shakesby 2013). Regions 
with significant soil moisture, such as stream catchments, are 
less prone to burning because the moisture must evaporate 
before the vegetation can ignite. Therefore, fires ignited in 
areas that experienced normal to above normal wet seasons 
are less likely to spread and the fire intensity will be low.

The proposed framework is built upon a classic representation 
of the Earth’s four spheres as shown in Figure 1. The rationale for 
this is to highlight the fact that fire events, and fire regimes, 
occur in the biosphere. The other three spheres – while 
simplistically depicted in the Figure 1, showing some of 
the components that play a role in fire – all influence 
conditions within the biosphere, where fire occurs. The role 
of spatial scale has often been underestimated in the previous 
attempts to conceptualise fire regimes. While one variable 
may be highlighted as the most prominent factor at 
microscale level, one still needs to grasp the interactions 
between various factors and how they ultimately influence 
the biomass (fuel) that is consumed by the fire. 

The temporal aspects of fire regimes can be easily adapted to 
this framework as the varying micro to macroscale elements 
within each of the spheres are accommodated.

An argument may be made to extrapolate human activities 
from the figure as an independent entity from the biosphere 
because of the influence it has had on the Earth’s processes and 
functions. Kelly et al. (2023) argue that humans became the 
dominant driver in fire regimes at approximately 10 000 years 
before present. Yet, it is my argument that while one cannot 
deny the significant role humans have played in altering 
natural fire occurrences – human activities cannot be crowned 
as main drivers of contemporary fire regimes. Similarly, one 
should look at the broader scale and consider factors that are 
often over-looked in the climate versus fuel versus human 
activities debate, such as groundwater, soil moisture, soil type 
and herbivory. When considering the multitude of physical 
variables together with the interactions that humans have with 
them – which forms key to many (bio)geographical issues – 
one can achieve a more thorough understanding of a fire 
regime. Furthermore, there already exists a number of 
geographical processing tools and techniques such as remote 
sensing (RS) and geographic information systems (GIS), which 
are used to study fires (Alves & Perez-Cabello 2017; Argibay, 
Sparacino & Espindola 2020; Bar, Parida & Pandey 2020; Bui, 
Le & Hoang 2018; Colak and Sunar, 2020; Conedera et al. 2018; 
De Gouvenain, Midgley & Merow 2019; Kong et al., 2019; 
Ladbrook, Van Etten & Stock 2018; Long et al. 2019; Mayr, 
Vanselow & Samimi 2018; Nunes, Lourenço & Castro Meira 
2016; Sannigrahi et al. 2020; Santana et al. 2018; Waigl et al. 
2017). The main limitation of this approach is highlighting the 
potential of one discipline in understanding, planning and 
mitigating fire regimes while fire occurrence, spread, impacts 
and mitigation are transdisciplinary in nature.

FIGURE 1: Biogeographical framework of fire regimes.
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Conclusion
To predict the occurrence and spread of fire events, fires have 
been categorised into different fire regimes. A new framework 
for understanding fire regimes has been introduced, which 
incorporates often neglected variables such as soil moisture, 
soil type and herbivory. In addition, the framework aims to 
reduce the issues with accurately depicting scalar changes to 
variables from micro to macroscale. Currently, there is 
disagreement regarding the most significant driver of fires and 
fire regimes, with some authors pointing to the dominating 
role of humans over the environment. This contentious matter 
will need further exploration as fire regimes and regime shifts 
can differ within the same region. A biogeographical 
perspective of fire regimes offers an essential and 
comprehensive contribution to the fire science, the prediction 
of future fire events and disaster risk management. Further 
studies can explore the dimensions of the framework and its 
applications to specific fire-prone ecosystems.
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